What trends and developments do 70 engineering deans in Europe care about most?

Deans of engineering programmes face a wide range of rapid developments. Interdisciplinary engineering research and education are gaining momentum. Yet, teachers and researchers are struggling with the boundaries that are created by departments and faculties, and current metrics for performance do not appraise interdisciplinary work. Universities are being confronted with large increases in number and diversity of their students, both in terms of culture and motivation. Yet, resources do not increase accordingly, and selection is not always accepted. There is the question to unbundle complete curricula to create dedicated knowledge packages instead for on-demand training. Emerging technologies are picked up for the support, production and assessment of courses. The societal digital transformation with the rise of MOOCs and other online education put the future of campus education in a new perspective.

Seventy deans of engineering faculties across Europe discussed these themes. It was one of the rare occasions where I sensed a shared urgency to change and a concern about a lack of willingness to change. “Universities are at risk; we are insufficiently engaged with the external world and focus too much internally; we have to make ourselves more resilient in order to survive; we need strong leadership” Jan Gulliksen, dean of School Computer Science and Communication at KTH said in his keynote.

European Convention of Engineering Deans / University Leaders Dialogue

Seventy deans and chief executive officers convened at the annual ECED (European Convention of Engineering Deans)/ ULD (University Leaders Dialogue) meeting in Munich on April 3 and 4, 2017. Technische Universitӓt München was the host of the meeting that was organised by CESAER (the Conference of European Schools for Advanced engineering Education and Research) and SEFI (the European Society for Engineering Education). My home university TU Delft was represented by Rector Magnificus prof. Karel Luyben, who is  also the President of CESAER, and Vice-Rector prof. Peter Wieringa. On behalf of the 4TU.Centre for Engineering Education (4TU.CEE) Perry den Brok from TU Eindhoven and I attended this conference.

The deans discussed the three major topics of research, education and governance. The first topic mainly dealt with how to support and appraise research that engages in interdisciplinary engineering, in a reality where metrics and other rewards are mainly gained via disciplinary systems. The third topic dealt with the type of leadership that is needed in universities to support new streams of research and innovations in education, especially in this age of high volatility and uncertainty. In this post I focus on the topic of education, although I do not want to detach it from the discussions about research and governance. Interesting youtube contributions from participating deans about research and education are available at the ECED 2017 website. A video from the BEST (Board of European Students in Technology), presented by Alexia Spyridonidou, gives an interesting insight in the priorities and expectations the young millennial generation has about their education and prospective career.

Participants of the ECED/ULD in Munich. Aldert Kamp and Perry den Brok from 4TU.CEE are on the left and front of the picture, see red arrow (Source: TU Munich)

Emerging themes and topics

A question that comes to mind is what topics or themes emerge across the universities of technology in Europe. What developments are going on and what type of initiatives do universities take? From the various speakers and contributions to ECED, the following topics came to the fore.

Crossing disciplinary boundaries

Much of today’s innovation requires a proper balance between deep disciplinary knowledge and broad working knowledge of the fundamentals of engineering sciences, humanities and social sciences, supplemented with personal and interpersonal skills. Research-intensive universities are skewed towards deep specialist knowledge and research. Most universities are organised along these lines. Excellence in research can only be achieved by publication scores that require specialism and depth. The dilemma between the horizontal (breadth) and vertical (depth) is being discussed everywhere, over and over again, also at this conference.

The vertical dimension is traditionally well organised and embedded. Its performance parameters can be easily measured and its values can demonstrate world class. The organisation of the horizontal dimension is still messy. Breadth cannot be measured that easily, whilst the need for the horizontal dimension in society is rapidly growing.

Many deans experience the transformation to research and education with more breadth as a tedious and dangerously slow process. The university organisations tend to gravitate back to their disciplinary silos that are so baked into the system that it will take an almighty alteration to deal it a serious blow. Appraisal cycles still award individual achievements by measuring individual performance of number and h-index of publications. Teaching is at risk for sure, because it is not a focus in any ranking management. Some fragments from the discussions: “If we do not make innovativeness and interdisciplinary collaboration an explicit part of the annual appraisal, it’s never going to happen”; “We get what we measure”; “Templates for recruiting academic staff are getting narrower and narrower, whilst we say in our policy documents that we aim for more diversity in cultures and backgrounds, including people from the non-academic world”. “To make change happen needs leadership by people who dare to take risks. It’s questionable whether we have such people onboard at the right organisational levels.”

Societal impact instead of individual achievements

Impact on society is mainly achieved by teamwork. We should therefore make the measuring and awarding of impact the new norm. But, the deans said, we miss a clear yard stick and instruments to do so. How can we measure graduates’ preparedness for the future? How can we measure the level of student innovativeness, or the real impact of commercialisation of research, or the value of innovation that can be attributed specifically to collaboration? Since we cannot measure and compare these impacts, it has become common practice to measure parameters that can be easily measured like headcounts, number of publications, h-index, number of start-ups, number of proposals. But these do not tell us anything about the real value of innovativeness of a university.

“We need to develop realistic teamwork, not heroic individuals”

The deans shared the viewpoint that creating impact on future society increasingly requires  interdisciplinary and holistic thinking. We cannot start early enough to awaken curiosity beyond our own discipline. We should not wait till the tenure or PhD trajectories, but already start the development of this mindset in the Bachelor’s and Master’s. “Remember, the biggest impact we have on society is the students we educate.”

T-shaped professionals

I heard a loud call from many deans to transform engineering education into educating T-shaped engineering professionals. These are people who have a deep working knowledge in their own discipline and have learnt to communicate and collaborate in teams with professionals from other domains and non-experts. I must acknowledge that I found the discussion about teaming T-shaped professionals a bit confusing. T-shaped professionals were said to be necessary to build teams as spoked wheels. They were said to collaborate with their broad communicative skills developed in the arm of the T, but can only converge their ideas through the deep disciplinary knowledge of maths, physics and engineering sciences, as acquired in the bar of specialisation of the T. I don’t know whether I completely agree. The spoked wheel is to me the metaphor for an interdisciplinary team.

The spoked wheel metaphor for an interdisciplinary team (interconnecting disciplines) and the gear wheel metaphor for a multidisciplinary team (connecting disciplines but doing their own thing)

A multidisciplinary team looks more as a gear wheel. These are teams where T-shaped professionals collaborate on the basis of their broad communicative skills and engineering fundamentals, but keep doing their own thing, solving problems and designing of solutions in their own discipline, sometimes touching upon the specialisms of other domains, possibly in other teams.


With the above in mind, more and more interdisciplinary courses, projects or curricula are being developed, often preceded by interdisciplinary research projects or groups. Interesting challenges that teachers face in such context are how to integrate different topics or domains, how to motivate students from different domains, and how to assess interdisciplinary tasks with teachers that are often experts in one domain.

Different engineering profiles

I noticed an emphasis on the fact that an engineering programme might consider to educate a range of engineers, with different professional profiles, for example the technology-oriented engineer, the society-oriented engineer, or the entrepreneurial engineer. This thinking matches well with the outcome of the 4TU.CEE “Free Spirits” Think Tank at TU Delft.  One unique engineering profile does no longer fit all students in a programme.

“Training soft skills has become an integral part of the engineering fundamentals, just like mathematics, physics and engineering sciences”.

Thus it was not surprising that the deans identified the need to personalise intended learning outcomes and accommodate individual learning paths by collaborative learning in multi- and interdisciplinary teams. The question rose how smart we are able to describe such intended learning outcomes and assess the soft and academic skills that will be the basis for the diversification of the professional engineering profiles.

Break-out session about the future of education (Source: TU Munich)

Students as change agents

A fundamental problem in universities is the level of conservatism. “We are not going to change our university in five years, not in 20 years either”. The deans said time has come that remaining static bears more risk than moving, even if it is not clear in which direction we should move. The emergence of Über-type universities is on the horizon.

The deans suggested that possibly students could make cultural change in universities happen. Student populations change typically every three years. The meeting stressed several times that we should try and give the students the opportunities to make disruptive changes in education by initiating and prioritising collaborative and interdisciplinary projects instead of enforcing them to take part in individual mono-disciplinary projects. Thus students  could become the driver for change. They might be in the position to bring professors to the future.

Many of today’s students in Northwest Europe have already got used to multidisciplinary and collaborative learning in their pre-university education. They have a mindset of co-creation, want to create the future and design solutions for societal relevant challenges. Millennial students do things differently. They are eager to develop cross-disciplinary projects and ideas by themselves. During our 4TU.CEE study trip to ETH-Zurich in March I had heard about a “Space for your ideas” project, in which students are stimulated to propose innovations in their education and help in the selection of best ideas. Of course, students will always need a mastermind to develop innovative curricula. Creating a new educational culture and freeing up space in curricula cannot be developed bottom-up alone.

In this context the deans emphasised the need to train the students an entrepreneurial mindset (see also my blogpost about Entrepreneurial Behaviour) and more adaptive capacity to get out on a limb for such cultural change.

Integration of skills in disciplinary curricula

Many engineering universities consider to transform the qualifications of their degree programmes into competence qualifications, and relate these to the curricular elements. They are struggling how to integrate the training and assessment of competences into their disciplinary curricula. Such competences include intercultural communication or collaboration, entrepreneurial behaviour, and  professional engineering skills, such as systems thinking, creativity and design thinking. These have to be embedded and should not be added as a cherry on top of the cake.

Specials hubs of excellence, or makerspaces have proven to be excellent breeding places for students to collaborate in interdisciplinary teams or hackathons, develop prototypes, or mentor start-ups. Students, professors and other academic staff, industrial experts, entrepreneurs and authorities feel attracted and meet and create an appealing place where students learn the many skills that are gaining importance in tomorrow’s world of work. The success of the Skylab (DTU, Copenhagen) has demonstrated that students stimulate each other to learn deep mathematics, engineering sciences, design and research skills and (inter)personal skills in a logical order and in a combined effort when the need is there. This is what Marianne Thellersen, Senior Vice President – Innovation & Entrepreneurship of DTU told us.


Reading the above about hubs of excellence, it is not surprising that we observe a clear trend that many universities experiment with makerspaces and living labs, in which students collaborate in interdisciplinary teams on authentic complex challenging projects that are relevant for society. Learning in these spaces connects knowledge to life,  so that learning sticks better through emotional connection. Such makerspaces and living labs become “competence centres” where students take advantage of the physical spaces and the real-life interactions with customers, and interweave learning, doing research and learn about innovation (see also my blogpost about the role of labs and makerspaces in engineering education).

More in general, I see a clear trend towards more student-oriented education, with emphasis on deep learning, a range of opportunities for freedom of choice for the students, and student-centred teaching methods. Examples of maker spaces can be found at Aalborg and other Scandinavian universities. During a recent study trip in March 2017 by the 4TU.CEE board members to EPFL in Lausanne I encountered the interesting initiative of Discovery Learning.  The Discovery Learning Lab (DLL) makes experimental and manufacturing facilities available in one central building for all students and academic staff of any discipline. It creates excellent opportunities for interdisciplinary ideas and project work. In future it may simply not be possible to have equipment that cost many millions of euros in different places. Sharing them between faculties or universities make them affordable, and the increasing capabilities of data storage and data transfer make  this possible.

Societal and industrial engagement

Throughout the conference meeting I heard the call to include more societal and industrial engagement in engineering education and research. European universities feel relatively little urgency to make societal contributions. many universities may have to shift research even more than today, from curiosity-driven research to applied research. We have to put university knowledge more at the service of solving the major societal challenges.

“Students who have never been in contact with industry are not prepared for the world of work”. Universities become aware that they have to provide students experiential learning opportunities in which they collaborate with companies and authorities and learn from alumni and other role models. Such experiences may involve outreach, but also deal with guest visits or lectures, internships, participation in living labs, or specific professional development programmes. During the 4TU.CEE Swiss study trip I observed that EPFL attracts and locates big innovative companies on campus to join the ecosystem of innovation. If forms an excelent breeding place for workplace learning by the engineering students.

At the ECED conference TU Delft presented their plan to initiate an interdisciplinary student research project “Cool down the planet” that builds upon the initiatives and successes of the student-led D:DREAM student projects. In earlier conferences I also heard about initiatives for so-called citizen science projects, where citizens, possibly from all over the world, are involved in the collection of data on certain phenomena such as nature, health, safety, mobility.

The panel discussion about the outcomes of the 2016 convention in the London Agenda among other things proposed to treat students as young engineers already during their study, as a matter of lifelong learning. In engineering practice engineers learn from their senior colleagues. Why not incorporate this dimension in our teaching through peer instruction for and by students?

Also sabbaticals for academic staff were identified as interesting opportunities to import more societal and industrial engagement into the curriculum. Some of the deans expressed their concerns that the best academics might not return from their sabbaticals because of their exposure to a potentially more attractive work atmosphere in the external world…

Universities in 2040

Throughout the meetings the question was raised as to whether universities of technology would still exist in 2040, if they continue with their current education and rate of change. The conference made it more than clear that they will certainly be unable to do so in its current form. We have to expect major changes, not only in what and how we teach, but also how we offer our curricula as complete and coherent 2- or 3-year course packages, and what the physical make-up of the campus university has to be. More and more examples become already visible in which students demand partial programmes, compose their own knowledge packages, obtain certificates and degrees via a Do-It-Yourself approach in alternative study programmes. Graduates from these individually tailored programmes are expected to be favourite in the selection process by company recruiters. Universities have to look seriously ahead to the future, in particular in terms of the on-campus experiences they intend to provide.

Dinner in the Ratskeller of Munich (Source: TU Munich)

It was repeated many times that if we do not succeed in integrating innovation and interdisciplinary thinking and collaboration in the recruitment process of young academic staff or in the annual appraisal cycle, universities will loose ground and change is not going to happen.

Upon my return home my attention was drawn to a newsletter in the 16 April 2017 University World News Global Edition. The emergent and expanding direction for university education could become “competency-based” certification. It allows students to move as rapidly as they wish through a programme to acquire the competencies that are needed for a professional engineering profile. They can be attained without obligatory presence on campus. The newsletter mentions that “one such programme is already offered by the private company StraighterLine (“Online College Courses That Fit Into Your Degree”). It has a basic fee for mastering materials that are certified by third parties and acceptable for transfer to a number of traditionally accredited universities to be applied to a degree”. It does not have so many engineering or technology courses yet, but shows how rapid developments go. Über-type universities are already rising on the horizon. They accommodate the increasing demand for differentiation with tailored content.


In 2018 the ECED/ULD will be held at the Norwegian University of Science and Technology in Trondheim. The approximately 15 Munich Statements about Education, Research and Governance, that developed into the headlines at the convention in Munich and are partly addressed in this blog post, will be elaborated and developed into strategic actions for the university boards. These actions have to pave a way to more agile and future-proof universities.

CESAER Taskforce Scientific Engineering Education

CESAER, the organising body of the conference, also initiated a taskforce to formulate a vision on scientific engineering education as input to discussions about policy of higher education in the European Commission. At the conference the 4TU.CEE was invited to play an active role in this taskforce. A first meeting with the members of the taskforce is scheduled at TU Eindhoven on May 12, 2017.

This post is a more comprehensive and personalised version of the post that has been published on the weblog of 4TU Centre for Engineering Education by prof. Perry den Brok, who is my 4TU.CEE teammate from the Eindhoven University of Technology.

Posted in Future engineering skills, Innovative teaching | Tagged , , | Leave a comment

Why entrepreneurial behaviour is a must for all young engineers

At some point in their careers, most, if not all engineers, will move to positions of technical or engineering leadership. That ranges from becoming a leader of a project team to a  leader of an entire technical enterprise. Or simply taking responsibility of the own career. Take the example of tenure trackers at university, who not only have to do excellent research but all of a sudden have to take on a role as an entrepreneur to secure their own employment by the acquisition of new projects by writing proposals. Should not we pay more attention to entrepreneurial education in our engineering programmes?

Entrepreuneurial education

When I start discussing entrepreneurial education the confusion is almost immediate. As soon as a colleague hears a word that sounds like “entrepreneur”, he or she stops thinking and has already made up his or her mind. It must be about monetisation of scientific research, creating spin-offs, partnering with industries, and learning about self-employment. No, they say, we shall not encourage all students to start up their own company, educate them in business development, self-employment, venture creation and growth, i.e. “how to become an entrepreneur”. I agree, this may be relevant for only a minority of our students, but much more important is the following for all engineering students:


Entrepreneurial behaviour top 50 words (Source: Slideshare)

Making students more creative, opportunity-oriented, self-reliant, initiative taking, action-oriented, innovative. These attributes are relevant to all walks in life of the engineer. They are related to personal development and entrepreneurial thinking.  I use the catch-all “entrepreneurial behaviour” for it. The calls for its inclusion in higher engineering education are numerous.

A first example I found in a recent blog post of  Richard Branson, the CEO of Virgin. It addresses why universities in higher engineering education should teach to be entrepreneurial. “These  universities aim to make their students more employable in the modern world. For them to truly be able to do this, it’s vital that they  allow and support students to be more entrepreneurial. Having (engineering) qualifications does matter, but being able to back them up with real-life experience is much more valuable when it comes to succeeding in business. Many companies, including Virgin, look to hire entrepreneurial people as they are great at turning challenges into opportunities and driving innovation.”

Another call I read in the recently published book “Higher Education in 2040, a Global Approach” by prof. Bert van der Zwaan. He states that academic staff on the shop floor needs stronger entrepreneurial thinking and acting skills than they master today.  These skills are urgently needed to find and seize the opportunities in nowadays’ academic context of declining research funds, increasing student numbers, distrust and a position in society that is less clear than it has ever been.

Most recently I heard the call for the inclusion of entrepreneurial behaviour in education last week. I attended the European Convention of Engineering Deans /University Leaders Dialogue (ECED/ULD), organised by CESAER and SEFI in Munich 3-4 April 2017. The meeting was concluded by 15 “Munich Statements”. One of them was about the urgent need to include training of an entrepreneurial mindset for all students in higher engineering education. The  engineering deans agreed that this mindset is essential for more innovativeness and successful career paths of young graduates in engineering and other domains.

Entrepreneurship versus Intrapreneurship

Original source: http://www.slideshare.net

A recent publication of the World Economic Forum discusses the rise of intrapreneurship in the world of work. It involves workers formulating and implementing new ideas within organizations, rather than starting their own businesses. In today’s engineering business the employer expects that each employee spots trends and opportunities for innovation in engineering and technology, and has network skills. The so-called Entrepreneurial Employee Activity (EEA) has become a key performance indicator in engineering business. The WEF article states  that entrepreneurial individuals in Europe increasingly choose to start new ventures or innovative projects while working for their employers rather than start their own business. “In Europe, a greater proportion of entrepreneurship is expressed as EEA than anywhere else in the world: 40% of entrepreneurial individuals are EEA entrepreneurs, compared with 29% in the United States”. When we add up the number of people engaged in start-ups, as the real entrepreneurs, and EEA into the mix, then Europe comes after only the US, Canada and Australia”. This underlines the importance of the mastery of entrepreneurial behaviour at graduation of an engineering study.

The common denominator is that all engineering students should acquire their ability and willingness to create value for other people. Creating value for other people is the most fundamental driver for the development of products, systems and processes in engineering and technology!

“Education at technical universities focuses on the mastery of fundamentals of maths and science, abstract engineering concepts and theories without addressing its relevance and relationship with the context of engineering practice and design. Young graduates are hard workers and performers, but have not learnt that in practice good can be good enough. They often come up with elegant gold rimmed solutions that miss any sense of value creation”.
– CEO of a Dutch global market leader for value-added logistic process automation; more than 4000 technical employees

Entrepreneurial behaviour develops into a key asset

At the TU Delft Education Day 14 December 2016 the plenary session explored the role and position of entrepreneurial behaviour in our education. About 26% of those present voted “No, this behaviour can be learnt on the job or in extracurricular activities”. And 74% of the attendees voted for the proposition “Yes, Entrepreneurial Behaviour will develop into a key asset of our engineers in future”; 47 % of these Yes-voters preferred to accommodate the learning of entrepreneurial behaviour in the programmes, but leave the choice to the students. 27% concurred with the statement “Yes, Entrepreneurial Behaviour will be a key asset for all our engineers. It should therefore constitute a core component of the overall engineering education, just as physics, mathematics and ethics are.” However, the range of opinions over the university is wide. A recent survey among academic staff in my Aerospace Engineering faculty reveals that only 23% is in favour of incorporating some entrepreneurial education in the Master’s.

I firmly believe that good employability in a future which is full of digitalisation, mass robotisation and emerging artificial intelligence, will require strong entrepreneurial behaviour with a good awareness of the bigger picture including strategic goals and trends in technology and society, customer desires and competitive threats. Employers expect their employees to have the capability to act like leaders by creating value through cost-reducing and revenue-increasing innovations, by taking initiative, by being self-reliant, creative, innovative, risk taking and agile, by decision making and sensemaking. All our graduates will end up as an intrapreneur at their employer or as an entrepreneur in their own start-up.

“Virgin could never have grown into the group of more than 200 companies it is now, were it not for a steady stream of intrapreneurs who looked for and developed opportunities, often leading efforts that went against the grain.”
– Richard Branson

Richard Branson states in his blog “Entrepreneurship is more popular than ever. Students shouldn’t be forced to choose between gaining experience or going to university – the two can be combined (…) I see the value of university as an incubator for entrepreneurial talents and partnerships.” He therefore advises students to enroll in a Master degree programme only if it supports them to acquire entrepreneurial behaviour.

We should take this seriously and integrate the teaching of this behaviour in our Master curricula on top of the things we’ve always done, such as the deep working knowledge in a disciplinary field, rational problem solving, etcetera.

Entrepreneurial behaviour no longer in the margin of a Master curriculum or as an extra-curricular course for the happy few, but as an integrated competence development pathway for all.

Integrating this competence in disciplinary content

I am happy to see that entrepreneurs, recruiters in engineering business, engineering deans, and many faculty staff at the TU Delft Education Day are aware of the increasing importance of entrepreneurial behaviour for our engineers. But making the change is a barrier. How do we move on from discussing these skills to integrating them in our curricula as a necessary part of the formation of an effective engineer? Do we know how to do it? Is our academic staff, recruited for academic excellence and research, equipped for the scholarship of teaching and learning this behaviour? Or should we train students to  give instruction to their peers about this important skill?

I don’t have all the answers but have a strong preference to stay away from extra courses. I highly prefer to apply the CDIO approach by integrating and embedding the learning and teaching of this entrepreneurial behaviour in already existing courses and research or design projects, and applying an active learning-by-doing approach.


Posted in Curriculum development, Future engineering skills | Tagged , , , , , | Leave a comment

What makes social scientists think engineering students should not learn how to design?

“Can engineers design? Social science easily proves they cannot”. This is the first line of Bauke Steenhuisen’s essay in the independent university magazine Delta of TU Delft March 2017. In his essay he questions design and design education. Bauke is an assistant professor at the Faculty of Technology, Policy & Management and wrote the essay at the invitation of the TU Network Design Education.

Let me begin to say that I have been a design engineer all my life, so the first line of his essay sounds quite provocative to me. Continue reading

Posted in Future engineering skills, Uncategorized | Tagged , , , , | Leave a comment

Evidence-based innovation in engineering education? This is why and how.

What do we learn from trial and error?

Curriculum innovation cycleInnovating curricula is about designing effective learning and teaching environments in continual cycles of educational practice and research. That’s what I have always learned in theory. But I have been curious why the professors and lecturers take very different approaches when they do research in their field of engineering or in their education. The structured process they follow when they aim to advance engineering knowledge and understanding through defining research questions, identifying hypotheses, collecting information and data for the purpose of making decisions, and testing those hypotheses, seems gone when they investigate how to enhance their teaching. The structured methodology is then often replaced by an unstructured trial-and-error process by producing prototype courses and improving them on the run. While we all know it is important to think systematically about teaching, learning and student success.

Continue reading

Posted in Continuous professionalisation, Innovative teaching | Tagged , , , , | Leave a comment

Teaching interdisciplinarity in field-specific disciplinary programmes involves more than just a shift of mind

This second post on interdisciplinary education is about my gain from the National Interdisciplinary Education Conference, organised by the Institute for Interdisciplinary Studies of the University of Amsterdam (UvA) February 2nd, 2017. At this conference a wide range of Dutch and Belgian institutes for higher education shared their best practices and discussed the challenges in interdisciplinary education:

  • How can we enable students to make meaningful connections between natural and engineering sciences and humanities and social sciences?
  • How can we support graduates who want to create bridges between business, science, technology and society?
  • How can we create an environment where these worlds can meet, and what are the obstacles that often stand in our way?

Continue reading

Posted in Continuous professionalisation, Innovative teaching | Tagged , , | Leave a comment

Interdisciplinary education: a wave of the future?

interdisciplinary-crayonsAlso at my university, though rigidly organised in disciplinary silos and producing disciplinary programmes, I hear the buzzwords “multidisciplinarity” and “interdisciplinarity” almost every day. Obviously there is a shift of interest towards exploring questions and solving problems that cross borders and engage with experts from multiple fields.  Quite some universities in Europe, the Americas and Asia make even bigger steps. They develop “liberal engineering” study programmes with the aim to bring broader education with more holistic thinking and societal context to engineering students.

Continue reading

Posted in Continuous professionalisation, Curriculum development, Future engineering skills, Innovative teaching | Tagged , , , , , | Comments Off on Interdisciplinary education: a wave of the future?

Labs and makerspaces create a sense of belonging and bring students face-to-face with engineering practice

At the festive opening of the new and renovated Aerospace Structures and Materials Lab at TU Delft Faculty of Aerospace Engineering 27th January 2017, I presented my viewpoint that educating the next generation of aerospace engineers should address more skills that are gaining prominence in future engineering practice, and that the renovated and new labs provide excellent opportunities for their learning and teaching. 

Continue reading

Posted in Future engineering skills, Innovative teaching | Tagged , , , , , | Leave a comment

A Rapidly Changing World: time already for a 3rd revised edition of my book?

A brief post with a humorous undertow.

In June I published the Second Revised Edition of my book “Engineering Education in a Rapidly Changing World“. On page 22 I included the disclaimer “What we do know is that tomorrow’s world will be an intense VUCA world… great advances are unpredictable, future scenarios thus full of uncertainty. We might miss a next revolution…..”

I had not expected that in less than seven months after its publication I already had missed the first revolution. Continue reading

Posted in Uncategorized | Tagged , | Leave a comment

You can always write blogposts, but not always make memories

This morning I was engaged in drafting a blogpost about the role  of labs and makerspaces in our engineering education. Until my son and daughter came to me with the best proposal this Sunday: “Let’s see where we can skate”. Since we are living in the Green Heart of Holland, in a former swamp, we have a very green landscape which is rich in undeep waterways that freeze easily. In former times many of these waterways were used by flat wide boats to transport the peat from the swamp area to the city of Amsterdam for heating. Today their main function is water management, to prevent the flooding of our deep polders. And when it starts freezing, they are the place to be if you like skating. Continue reading

Posted in Uncategorized | Tagged | Leave a comment

Educating engineers for a resource constrained future: do we understand what we are doing?

CDIO_coated_TM [Converted]_jpegHas it ever been different?

“Engineering Opportunities in a Resource Constrained Future”. When I read this theme of the CDIO European Regional Meeting at Trinity College Dublin on 12-13 January 2017 the very first time, I wondered: “Has it ever been different?” Have we ever had an age where we had an unlimited amount of resources in engineering or engineering education? In my keynote “Adapting engineering education to change” I therefore started with the question which resource constrains us most in higher engineering education. Is it the growing number or attitude of students, the number or capabilities of staff, or the facilities to accommodate all students or new pedagogies? In the end of course everything can be expressed in terms of money. But I believe the major constraining resource is TIME: the consensus is that we as engineering educators can’t keep up with the pace of change in engineering knowledge and methods,  the changing needs by our graduates, and the emerging technologies in education.

Continue reading

Posted in Continuous professionalisation, Curriculum development, Future engineering skills, Innovative teaching | Tagged , | Leave a comment

Vision on TU Delft Aerospace Engineering Education 2020

A new Long-term Vision

Mid November 2016, my faculty of Aerospace Engineering published its long-term vision in the form of the online magazine “Long-term Vision of the Faculty of Aerospace Engineering TU Delft 2016 – 2020: ‘It’s all about connections“. In this vision the (former) Dean, I as the Director of Education, and the departmental directors, theme organisers, project leaders and others address in personal interviews the question of how the faculty can make an optimum contribution to society at a time when everything is increasingly revolving around connections. Clipboard02

Since many of my blog followers have no affiliation with TU Delft but do share, I presume, my interest in the vision on engineering education, I have copied the full text about the Bachelor and Master Education into this blog post. A complementary vision on education, more specifically on Online Education, was established by my colleague Renee van de Watering and is available here. Continue reading

Posted in Curriculum development, Future engineering skills | Tagged , | Leave a comment

An innovative educational framework that lies on your doorstep

Most curriculum innovations fail

As a board member of the Educational Leadership Course that is organised under the sponsorship of Erasmus University, TU Delft and University Leiden (LDE), I reviewed the application files of the 17 candidates for the course in 2017. An important component in these files is the plan for the individual education innovation project. These projects are supposed to be the “mental organiser” for the participants during the 1-year course. Reviewing the files I noticed that quite a number of innovation projects at the three universities are about an upgrading or restructuring of Bachelor or Master curricula. Each one will be a challenge, because we know that most curriculum innovations fail, don’t we..? Continue reading

Posted in Continuous professionalisation, Curriculum development | Tagged | Leave a comment

Preparing for change before it happens

“The chief characteristic of the modern world is the scope and speed of change” (Tony Blair)

Front cover 2nd Revised Edition

Last summer I published the 2nd revised edition of my vision on engineering education of the future. With this vision I call higher management, educational leaders, programme coordinators and lecturers  to dare look beyond their discipline specialisation at the ever faster changing outside world. We can no longer stick our heads in the sand and refuse to see that both technology and society are fundamentally reshaping the engineering profession.It is obvious that many curricula do not keep up with the changing needs of the job market, no matter whether it is the academic, industrial, or new ventures market.

We are proud of the reputation of the Delft engineers. They are internationally well known for their specialist knowledge, their ability to cooperate in the global world, and their open mind. We are strong in educating research scientists. We can be happy with the education we have, but we also have to think how future proof it is. Young engineering graduates often need stronger skills in for instance creative thinking, systems and holistic thinking, entrepreneurial behaviour, interdisciplinary thinking, and algorithmic thinking. These skills are gaining quickly in importance.

In the past thirty to forty years engineering education has become increasingly engineering science driven. That is a worldwide trend. Ideally speaking, the analytical approaches of engineering science and engineering practice should be balanced and stimulate each other in our education. The trend, however, is that the engineering science component has become much more important than engineering practice and design.This makes that graduates of engineering programmes are not always optimally prepared for their future job and may encounter problems in future when they have to adjust to the fast changes by lifelong learning.

Since 2013 I have immersed myself in the future developments of higher engineering education with a horizon of 2030, at programme level at the faculty of Aerospace Engineering, at institutional level, the four Dutch technical universities, and as a thought leader in the global CDIO network.

Welcome to my blog. My aim is to inform you at regular intervals about developments in higher engineering education and society, and events in my neighbourhood that strike, inspire and fascinate me, and keep me busy in my rethinking of engineering education. Probably they will keep me more than busy, because I expect that we may have to change engineering education more profoundly and rapidly than we have done over the past 40 years.

I hope you will also enjoy the photos I have taken of beautiful sceneries that I will randomly change in the header of my blog.

Posted in Future engineering skills | Tagged , , | Leave a comment